Accurate Discretisation of a Nonlinear Micromagnetic Problem

نویسنده

  • P. B. MONK
چکیده

In this paper we propose a finite element discretization of the Maxwell-Landau-Lifchitz-Gilbert equations governing the electromagnetic field in a ferromagnetic material. Our point of view is that it is desirable for the discrete problem to possess conservation properties similar to the continuous system. We first prove the existence of a new class of Liapunov functions for the continuous problem, and then for a variational formulation of the continuous problem. We also show a special continuous dependence result. Then we propose a family of mass-lumped finite element schemes for the problem. For the resulting semi-discrete problem we show that magnetization is conserved and that semi-discrete Liapunov functions exist. Finally we show the results of some computations that show the behavior of the fully discrete Liapunov functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Full Discretisation for Nonlinear Second-Order Evolution Equations with Monotone Damping: Construction, Convergence, and Error Estimates

Convergence of a full discretisation method is studied for a class of nonlinear second-order in time evolution equations, where the nonlinear operator acting on the first-order time derivative of the solution is supposed to be hemicontinuous, monotone, coercive and to satisfy a certain growth condition, and the operator acting on the solution is assumed to be linear, bounded, symmetric, and str...

متن کامل

An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry

We design an arbitrary high order accurate nodal discontinuous Galerkin spectral element approximation for the nonlinear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from a skew-symmetric formulation of the continuous problem. We prove that this discretisation exactly p...

متن کامل

A Discretisation Method for Solving Time Optimal Control Problems

Abstract: Classical methods are mostly deficient for solving nonlinear time optimal control problems. In this paper an approach to solve this kind of problems is considered. This method was first presented by Badakhshan et al. in [1] and in this paper, this method is expanded to solve time optimal control problems. In this approach the time optimal control problem is changed to a problem in cal...

متن کامل

Discontinuous Galerkin Spectral/hp Element Modelling of Dispersive Shallow Water Systems

Two-dimensional shallow water systems are frequently used in engineering practice to model environmental flows. The benefit of these systems are that, by integration over the water depth, a two-dimensional system is obtained which approximates the full three-dimensional problem. Nevertheless, for most applications the need to propagate waves over many wavelengths means that the numerical soluti...

متن کامل

Fast accurate computation of the fully nonlinear solitary surface gravity waves

In this short note, we present an easy to implement and fast algorithm for the computation of the steady solitary gravity wave solution of the free surface Euler equations in irrotational motion. First, the problem is reformulated in a fixed domain using the conformal mapping technique. Second, the problem is reduced to a single equation for the free surface. Third, this equation is solved usin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002